I have been two years doing processing and manipulating data using R and mostly I use this language for my research project. I only heard and never tried Python for my work before. But now, after I use Python, I really fall in love with this language. Python is very simple and it is been known that this language is the easiest one to be learned. The reason why previously I used R was this language is supported by tons of libraries for scientific analysis and all of those are open source. Now, with the popularity of Python, I can find easily all libraries that I need in Python and all of them open source as well.

There are core libraries that you must know when you start to do data analytics using Python:

- NumPy, it stands for Numerical Python. Python is different with R, the purpose of R language is for scientist. On the other side, Python is just general programming language. That’s why Python needs a library to handle numerical things such as complex arrays and matrics. Repo project link: https://github.com/numpy/numpy
- SciPy, this library is for scientific and it handles such as statistic computing, linear algebra, optimation etc. Repo project link: https://github.com/scipy/scipy
- Pandas, if you have experiences with R, it is very similar to DataFrame. Using DataFrame, we can easily manipulate, aggregate, and doing analysis on our dataset. The data will be shown in a table similar to Excel Spreadsheet or DataFrame in R and it convenient to access the data by columns, rows or else. Repo project link: https://github.com/pandas-dev/pandas
- Matplotlib, Plotting is very important for data analysis. Why we need plotting? the simple answer is to make anyone easier and we know that one picture can descript 1000 words. To generate visualization from dataset, we absolutely need data visualization tools. If you have experiences with Excel, it is very easy, just block the table that you want to plot and select the plotting types such as Bar chart, line chart, etc. In R, the most popular tools for plotting is ggplot, basically, you can use standard library
*‘plot’*in R but if you want more advanced and more beautiful figure you need to use ggplot. How about in Python? Matplotlib is the basic library for visualization in Python, Repo project link: https://github.com/matplotlib/matplotlib

Those are the core basic libraries that you need when you start to use Python for data analytics. There are tons of Python libraries out there, here some of them that may useful for you:

- SciKit-Learn, when you want to apply machine learning, you have to understand this.
- Scrapy, to scrap the data from the Web, when you want to gather the data from websites for your analysis. For instance, collecting tweets data from Twitter.
- NLTK, if you want to do natural language processing.
- Theano, Tensorflow, Keras, when you are not satisfied with NumPy performance or want to apply neural network algorithms or doing deep learning stuff, you have to understand these libraries.
- Interactive Visualization Tools, matplotlib is basic plotting tool and it is enough for me as researcher especially for publications, but when we want a dynamic plotting or more interactive, we can use Seaborn, Ploty, or Bokeh.

#### If you do not want to think too much about how to install all of those libraries, just try to use Anaconda, it is really cool.

See ya next time

Brisbane, 24 November 2017

## 4 thoughts on “Python for Data Science”